A new model of temporary focal neocortical ischemia in the rat.
نویسندگان
چکیده
BACKGROUND AND PURPOSE We describe a new rat model of temporary focal ischemia that produces neocortical ischemia without the need for prolonged anesthesia. METHODS Temporary focal cerebral ischemia was initiated during halothane anesthesia, maintained for varying periods without anesthesia, and reversed by clip removal requiring brief anesthesia. Tandem carotid and middle cerebral artery occlusion for 1-4 hours and permanent occlusion were used to determine the duration and extent of ischemia necessary to produce predictable volumes of neocortical infarction in Wistar and spontaneously hypertensive rats. RESULTS In Wistar rats, occlusion of the right middle cerebral and both common carotid arteries resulted in cerebral blood flow reductions to approximately 8% of baseline. One hour of transient ischemia with 23 hours of reperfusion did not result in infarction. Three hours of ischemia followed by 21 hours of reperfusion resulted in infarction comparable to that caused by 24 hours of permanent ischemia. In spontaneously hypertensive rats, unilateral right middle cerebral and common carotid artery occlusion reduced cerebral blood flow to approximately 11% of baseline. Minimal damage was seen with 1 hour of reversible ischemia, but intervals of 2 and subsequently 3 hours followed by 22-21 hours of reperfusion produced progressively larger infarcts. Damage indistinguishable from that seen with 24 hours of permanent ischemia was seen with 3 or 4 hours of transient ischemia followed by 21 or 20 hours of reperfusion. CONCLUSIONS For unanesthetized normothermic rats, cerebral blood flow reductions to 10-20% of baseline resulted in maximal infarction once ischemic durations exceeded 2-3 hours. To be effective, experimental therapies aimed at lessening infarct size or restoring blood flow must be initiated within this critical time interval.
منابع مشابه
Comparison effect of pentobarbital sodium with chloral hydrate anesthesia on post-ischemic damage in an experimental model of focal cerebral ischemia
Introduction: Anesthetic agents, blood pressure, arterial pH and blood gases have found to influence on the pathophysiology of experimental stroke. Despite, there are very few comparative studies about effects of anesthetic agents in animal model of cerebral ischemia. Therefore, in this study, we investigated the effects of chloral hydrate and pentobarbital anesthesia, as comparative study, on...
متن کاملEffect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia
Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...
متن کاملEvaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملP18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia
Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 23 2 شماره
صفحات -
تاریخ انتشار 1992